Einführung in die Vektorrechnung
 

Der Begriff Vektor ist ja bereits aus dem Physikunterricht bekannt - Zur Erinnerung: Kräfte, Geschwindigkeiten oder Beschleunigungen waren vektorielle Größen, da sie nur durch die Angabe von Betrag, Richtung und Anfangspunkt genau beschrieben werden konnten (Skizzen).

Addition von Kräften (anklicken zum Vergrössern)vvvvvvGeschwindigkeitskomponenten ermitteln

Andere Größen, wie z. B. die Masse oder die Temperatur, sind skalare Größen. Das bedeutet, daß die Angabe des Betrages (natürlich immer mit der entsprechenden Einheit!) ausreicht, um sie genau zu beschreiben.

In der Mathematik ist der Vektor vom Prinzip her das Gleiche wie in der Physik. Größen, die durch die Angabe von Betrag, Richtung und Anfangspunkt bestimmt werden müssen, sind Vektoren. Zur Kennzeichnung verwenden wir Pfeile:

Länge des Pfeils - Betrag des Vektors,
Richtung des Pfeils - Richtung des Vektors,
Anfangspunkt des Pfeils - Anfangspunkt des Vektors.

Das sieht in verschiedenen Mathematikprogrammen dann so aus:

Geometrie für die Sekundarstufe

Analytische Geometrie

Um einen Vektor sofort von einer anderen Größe unterscheiden zu können verwendet man zur Bezeichnung entweder altdeutsch Buchstaben oder Buchstaben mit einem Pfeil darüber:

altdeutsche Buchstaben und Vektorschreibweise

Wenn Vektoren im dreidimensionalen Raum liegen, werden sie durch drei Koordinatenangaben gekennzeichnet. Jeder Vektor hat eine x-Koordinate, eine y- Koordinate und eine z-Koordinate. Diese werden durch Klammern zusammengefaßt, aber (anders als bei Punkten) nicht nebeneinander sondern übereinander. Das sieht dann z. B. so aus:

Beispiel für einen Vektor a


Im Beispiel ist der Vektor hellblau dargestellt. Wenn man auf START klickt werden die Koordinaten angezeigt. Zur besseren Veranschaulichung sind diese als Seiten eines Quaders dargestellt, der den Vektor als Raumdiagonale hat! Das Koordinatensystem ist frei beweglich, d.h. mit Hilfe der Konsole darunter kann man das System rotieren lassen, zoomen und ähnliches mehr, um sich einen räumlichen Eindruck davon zu verschaffen:

Hier sieht man einen Vektor (schwarz). Da dieser Vektor im Koordinaten-Ursprung beginnt nennt man ihn Ortsvektor.
Das bedeutet, er weist die Richtung vom Koordinaten-Ursprung zu einem Ort im Raum (KOS)!

Um die Lage des Vektors im Raum besser erkennen zu können legt man einen Quader
mit den entsprechenden Abmessungen mit in den Raum.

Wenn man nun nur noch die Kanten des Quaders anzeigen lässt, die den Koordinaten entsprechen,
dann ergibt sich ein klares Bild der Lage des Vektors im Raum.


Da der Vektor für den dargestellten Quader eine Raumdiagonale bildet, ist der Betrag des Vektors gleich der Länge der Raumdiagonalen, also:

Für unseren Beispielvektor bedeutet dies folgendes:
Damit hat der Vektor a den Betrag 9,7. Und damit ist das erste Kapitel Vektorrechnung schon erledigt. Versuche nun, die Übungsaufgaben zu diesem ersten Thema zu lösen.
 
 

Übung 1   Übung 2   Übung 3   Übung 4


Ortsvektoren und Repräsentanten

Grundsätzlich werden in der Vektorgeometrie zwei Arten von Vektoren unterschieden: Ortsvektoren und Repräsentanten!
Vektoren werden als Ortsvektoren bezeichnet, wenn ihre Anfangspunkte mit dem Koordinatenursprung übereinstimmen.
Das heißt, Ortsvektoren zeigen immer vom Punkt (0;0;0) auf einen Punkt im Raum!
Repräsentanten von Ortsvektoren können jedoch beliebig im Raum liegen. Ein Vektor ist also die unendliche (warum???) Menge aller Repräsentanten, die den selben Ortsvektor darstellen!

Um nun von beliebigen Vektoren (die durch Anfangs- und Endpunkt gegeben sind) den Ortsvektor zu bestimmen, den sie repräsentieren, muß man die Differenz der Koordinaten bilden. Man subtrahiert von den Koordinaten des Endpunktes die Koordinaten des Anfangspunktes:

Im konkreten Fall sieht das dann so aus: Ein Vektor der vom Anfangspunkt A (1,-4,2) zum Endpunkt E (7,-2,5) verläuft, der repräsentiert den Ortsvektor vom Koordinatenursprung (0,0,0) zum Punkt (6,2,3).


Im Beispiel ist ein Ortsvektor (orange) dargestellt. Zusätzlich werden einige Repräsentanten (lila) dargestellt.
Diese Repräsentanten haben alle dieselbe Richtung und denselben Betrag wie der Ortsvektor, aber ihr Anfangspunkt ist beliebig.


Man erkennt, dass alle Repräsentanten den gleichen Betrag und die gleichen Richtung haben, aber der Anfangspunkt variiert.

Wenn du nun noch ein paar Übungen selbst rechnen möchtest, dann klicke jetzt die
Übungsseite zu Ortsvektoren und Repräsentanten an!


Übung 5  Übung 6